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Chapter 15

Third-generation bioethanol: status,
scope, and challenges

Deepthi Hebbale1,2 and T.V. Ramachandra1,2,3

1Energy & Wetlands Research Group, Centre for Ecological Sciences, Bangalore, India, 2Centre for Sustainable Technologies, Bangalore, India,
3Centre for Infrastructure, Sustainable Transportation and Urban Planning [CiSTUP], Indian Institute of Science, Bangalore, India

15.1 Introduction

Major commercial energy sources such as oil, coal, and natural gas are extracted from fossil fuels. The burning of fossil

fuels results in the escalation of CO2 in the atmosphere, which is a major cause of global warming, price volatility, air

pollution, and environmental degradation (Adenle et al., 2013; Naik et al., 2010). Surging demand in these sectors has

led to an increase in oil production from the finite source of fuel reserves. Continuous exploitation is depleting these

reserves at a staggering speed, which will no longer suffice the world’s energy demand (del Rı́o et al., 2020; Goli et al.,

2016; Hirsch et al., 2005; Raheem et al., 2018), leading to a global energy crisis. Hence fossil fuels are regarded as

unsustainable and questionable from economic, ecological, and environmental points of view (Naik et al., 2010).

Therefore the quest for an economical, renewable, sustainable, and environmentally benign source of energy is under-

way (Hahn-Hägerdal et al., 2006; Tripathi et al., 2016). Biomass energy in the form of cow dung cake, firewood, agri-

culture residue, and other natural feedstock for cooking and heating has been prevailing for ages and contributes to

80% of rural energy in developing countries like India (Kumar et al., 2015; Ramachandra, 2010; Ramachandra et al.,

2000, 2004). Biofuels from biomass such as plants, algae, or organic waste are emerging as promising alternative

renewable energy sources to liquid fuels (Jambo et al., 2016). Different technologies have evolved toward the conver-

sion of biomass into fuels and other value-added products that have the advantage of mitigating global warming by cut-

ting down carbon dioxide emissions, as CO2 is fixed by the biomass via photosynthesis, making it a carbon-neutral

emission (del Rı́o et al., 2020) and also easing the dependency on oil reserve (Bhattacharyya, 2006; Kumar et al., 2015;

McKendry, 2002; Naik et al., 2010). Biofuels are of two types, namely bioethanol and biodiesel; bioethanol is produced

from carbohydrate-rich algal biomass (e.g., macroalgae), whereas biodiesel is produced from lipid-rich algal biomass

(e.g., microalgae). The dependence on fossil fuels (gasoline) in the transport sector can be reduced by bioethanol, as it

is effective in replacing or blending with gasoline. The development and commercialization of bioethanol are largely

achievable due to the availability of feedstock in large quantities (Jambo et al., 2016). Bioethanol feedstocks are catego-

rized into first, second, and third generations based on the feedstock’s carbon source. Bioethanol from first-generation

feedstock (1G) involves food crops like corn and sugarcane, which encounter resistance due to the arable land, freshwa-

ter source for its cultivation, and competition with food crops (Naik et al., 2010). The lacunae of 1G bioethanol in sup-

plementing the growing energy demand led to the exploration of alternate feedstocks involving agricultural residues

and woody biomass rich in lignocellulose [second-generation (2G) bioethanol feedstock]. However, 1G and 2G bioetha-

nol production failed due to process technology involving the cost-intensive delignification process and difficulty in

scaling up (Zhu and Pan, 2010). Bioethanol potential from 1G and 2G feedstock marginally complies with various other

sustainability criteria, such as the conversion of ecologically vulnerable wetlands, extensive usage of fertilizers, soil ero-

sion, rainforests, peatlands, savannas into energy croplands, and disruption of global food supply contributing to several

magnitudes of CO2 (Gasparatos et al., 2013; Maeda et al., 2015). Bioethanol production from third-generation feedstock

(3G) involves algal biomass that is grown in freshwater, wastewater (Ramachandra et al., 2013), and marine waters

with zero nutrient input and, more importantly, noninterference with the lands required for food production (Demirbas,
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2008; Odum and Heald, 1972). At present, the research focus is currently on bioethanol production from 3G feedstock

due to higher photosynthetic efficiency (6%�8%), productivity (B13.1 kg dry weight/m2 over 7 months), ease of culti-

vation, low consumption of fertilizers, no alteration with food supply, and high absorption of CO2 (8�10 tonnes CO2

per hectare) (Kraan, 2013), potential to obtain high value-added products (pigments, cosmetics, food additives, etc.)

Algal biomass has emerged as one of the ideal feedstock for achieving sustainable biorefinery having immense potential

for commercialization (Jambo et al., 2016) (Fig. 15.1).

15.2 Bioethanol production from algal biomass

Production of bioethanol from algal biomass involves three steps, namely pretreatment, saccharification, and fermenta-

tion, which are discussed in detail in the subsequent sections. Algae are of two types: micro- and macroalgae.

Microalgae are explored for the production of biodiesel (Ramachandra et al., 2009; Saranya et al., 2018), whereas

macroalgae, rich in carbohydrate, are suitable for the production of bioethanol (Borines et al., 2013; John et al., 2011;

Ramachandra and Hebbale, 2016, 2020; Roesijadi et al., 2010; Wei et al., 2013; Yanagisawa et al., 2013). Macroalgae

(commonly known as seaweeds) are multicellular, photosynthetic algae growing in marine environments and, to a lesser

extent, in brackish waters. Photosynthetic pigments in seaweeds impart a characteristic range of colors, for example,

red (Rhodophyta), green (Chlorophyta), and brown (Phaeophyta) algae (Abbott et al., 1992; Smith, 1938; Van Den

Hoek, 1984). Green seaweeds are euryhaline, that is, tolerating a wide variations in salinity levels, whereas red and

brown seaweeds are strictly marine dwelling. Seaweeds have a wide distribution from tropics, temperate, and polar

regions to tidal pools, estuaries, deep waters, and rocky shores, whereas brown seaweed species, belonging to the order

Laminariales, occur mostly in temperate regions (,24�C) (Abbott et al., 1992). Seaweeds grow by attaching to a sub-

strate (natural or artificial); due to the need for stable anchorage, large seaweed beds are restricted to rocky substrates

(Abbott et al., 1992; Speight and Henderson, 2013). Macroalgal tissues lack specialized translocatory systems and the

structure of the “higher plants” (Abbott et al., 1992). The macroalgal body is a rootless, stemless, and leafless entity

called thallus, although many have superficially leaf-like blades and stem-like stipes and often have attaching organs

called holdfast or haptera (Lobban et al., 1994; Smith, 1938). Most algae lack these structures, owing to their morpho-

logical adaptations and modifications (Abbott et al., 1992). Seaweeds reproduce either asexually or sexually (Lobban

et al., 1994). Asexual reproduction is a common mode of reproduction in seaweeds.

FIGURE 15.1 Bioethanol production process from biomass.
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Generally, the biochemical composition of seaweeds is as follows: carbohydrates: 25%�77% dry weight,

proteins: 5%�43% dry weight, lipid: 1%�5%, and ash content: 9%�50% dry weight followed by higher water content

of 70%�90% fresh weight (Jung et al., 2013; Praveen et al., 2019). Seaweeds consist of varied profiles of structural

and storage carbohydrates (Daroch et al., 2013; Kostas et al., 2016a,b) based on the respective intercellular spaces and

cell wall (Pereira and Neto, 2014) (Fig. 15.2).

Seaweed polysaccharides show a range of structures and fulfill a variety of functions similar to neutral sugars and

sugar acids of terrestrial plants. Certain seaweeds also contain acidic half-ester sulfated groups attached to hydroxyl

groups of sugars. Hexose sugars such as glucose, galactose, and mannose found in these polysaccharides have identical

chemical compositions. Carbohydrate reserves of red algae are usually stored in the form of small grains that lie in the

cytoplasm outside the algal plastids, the chromatophores. The insoluble carbohydrate reserve of red algae has been

called Floridean starch (intermediate between true starch and dextrin) (Yu et al., 2002). Polysaccharides such as starch

and cellulose in green algae are similar to those of terrestrial plants. Macroalgal biomass lacks lignin in its composition

(Jung et al., 2013), except in a few red seaweed species. Apart from the higher content of carbohydrates in seaweeds,

protein and ash contents are also relatively higher; however, lipid fraction is considerably low.

An effective biorefinery process is achieved by the characterization of the feedstock employed, such as a large vari-

ety of carbohydrates (mono-, di-, polysaccharides) that serve as raw materials for bioethanol production. Quantification

of carbohydrate content (Table 15.1) in the biomass is an essential step in the biorefinery process as it is directly pro-

portional to ethanol yields in the biochemical conversion process and facilitates overall process efficiency calculations

as well as mass balance (Aden et al., 2002; Kostas et al., 2016a,b). Seaweeds accumulate large concentrations of carbo-

hydrates (polysaccharides) made up of various monosaccharides such as xylose, glucose, galactose, and fructose. These

sugars are converted to bioethanol through fermentation via THE appropriate microorganisms.

15.2.1 Availability of macroalgal feedstock

Macroalgae occur along the nutrient-rich coastal zones by attaching to hard substrata. Global seaweed distribution is

highest between 60�N and 60�S latitude with 900�1100 species; the least number of species are recorded .60 degrees

in both hemispheres. In these regions, mostly, cold water-desiring macroalgae are recorded, such as Laminaria and

Undaria. (Hurd et al., 2014). The most prominent macroalgal genera along the coastal regions of India explored for

bioethanol potential are indicated in Fig. 15.3.

FIGURE 15.2 Macroalgal biochemical composition profile.
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TABLE 15.1 Biochemical composition and monosaccharide profile of potential macroalgal genera for bioethanol

production.

Biochemical composition

(%)/ 100 g dry biomass

Ulva sp. Gracilaria

sp.

Gelidium

sp.

Sargassum

sp.

Kappaphycus

sp.

Laminaria

sp.

Ash 18�49.6 22.9�26 2.5�4.8 40.0�46.0 18.0�19.7 8.7�41.2
Lipid 1�3.5 0.7�6 0.7�7.4 0.75�2.5 0.2�0.75 0.6�3.4
Protein 10.7�25.9 4.3�16 10.2�18.7 10.25�15.42 2.3�5.74 1.1�19.8
Carbohydrate 53�69.9 30.4�76.67 53.2�75.8 23.5�41.81 51.6�59.58 33.9�76

Monosaccharides composition/100 g carbohydrate

3,6-Anhydrogalactose 28.9�43.5
Arabinose 0.0�0.8
Fucose 0.2�0.4 33.6�57.0 0.2�7.4 4.2�8.5
Galactose 7.2�8.5 30.6�42.8 21.8�40.6 0.0�4.0 20.3�22.39
Glucose 0.2�25.4 20.5�24 22.5�65.6 0.4�0.78 24.5�62.2
Mannitol 0.0�0.8 0.2�5.04 11.2�37.9
Mannose 0.0�4.2 0.0�0.07 0.0�0.4 0.0�4.0
Rhamnose 3.3�12.7
Ribose 0.1�2.7
Uronic acids 25.9�28.8 20.8�41.6
Xylose 5.6�14.4 0.0�0.3 0.0�1.3 0.5�19.4 6.0�12.0
Bioethanol (L/100 kg dw) 5.58�11.7 2.6�4.7 1.62 4.4 1.7�2.4 5.4�26.2

(Abd-Rahim et al., 2014; Borines et al., 2013; Chennubhotla et al., 1990; Masarin et al., 2016; Parthiban et al., 2013; Sung-Soo, 2012; Wu et al., 2014;
Yeon et al., 2011).

FIGURE 15.3 Distribution of

macroalgal species along the

coastal regions across India,

explored for bioethanol production

potential (Ramachandra and

Hebbale, 2020).
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15.2.2 Pretreatment

Bioethanol production from macroalgae requires extraction of fermentable sugars; several studies have reported

(Table 15.2) different pretreatment techniques (Wooley et al., 1999; Hendriks and Zeeman, 2009), including chemical,

physical, or biological, or combinations of these techniques, through which higher sugar concentration can be obtained

(Feng et al., 2011; Kim et al., 2014; Meinita et al., 2012b; Park et al., 2012; Yoon et al., 2010). Pretreatment of biomass

is carried out to reduce the size and alter or remove structural and compositional impediments prior to subsequent

enzyme hydrolysis. Pretreatment needs to be cost effective and release a high quantity of sugar with minimal inhibitor

formation.

The most commonly used chemical pretreatment method for obtaining higher fermentable sugars from macroalgal

biomass is the dilute acid pretreatment method, which employs mineral acids such as H2SO4 and HCl at milder concen-

trations of 0.3�0.9 N (Meinita et al., 2012a; Park et al., 2012). During the dilute acid pretreatment process, reaction

parameters such as reaction time, acid concentration, and substrate concentration are involved for efficient sugar release

from algal feedstock (Table 15.3). Pretreatment with dilute H2SO4 at optimal concentration and temperature is reported

to be effective for cell wall depolymerization. The advantage of the dilute acid pretreatment method is lower energy

consumption as compared to other pretreatments. However, a disadvantage of dilute acid pretreatment is the formation

of fermentation inhibitors such as 5-hydroxymethyl furfural (HMF) and levulinic acid (LA) with the degradation of hex-

ose sugars and furfurals from pentose sugar degradation. Hence enzyme hydrolysis has been determined to be a sustain-

able option for hydrolysis as it does not involve the formation of any inhibitors because enzymes do not cause the

degradation of monosaccharides (Yanagisawa et al., 2013).

TABLE 15.2 Assessment of selected pretreatment processes.

Pretreatment process Yield of fermentable sugars

Physical or physicochemical Mechanical Low
Steam explosion High

Pretreatments Ammonia fiber explosion (AFEX) Moderate
Carbonic acid Very high

Chemical pretreatments Dilute acid Very high
Concentrated acid Very high
Alkaline extraction Very high
Wet oxidation High
Organosolvent Very high

Biological pretreatments Commercial enzymes or bacterial/fungal enzymes Very high

Source: Hendriks, A.T.W.M., Zeeman, G., 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology100, 10�18;
Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majdeski, H., Galvez, A., 1999. Lignocellulosic biomass to ethanol process design and economics utilizing co-
current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios.

TABLE 15.3 Reducing sugar yield reported from macroalgal feedstock at different dilute H2SO4 concentrations.

Macroalgal species Dilute H2SO4 concentration Reducing sugar yield References

Gracillaria verrucosa 1.5% 430 mg/g (Kumar et al., 2013)
373 mM 7 g/L (Nguyen et al., 2017)
0.1 N 7.47 g/L (Kim et al., 2015a,b)

Kappaphycus alvarezii 0.9 N 300 mg/g (Khambhaty et al., 2012)
1% v/v 81.62 g/L (Hargreaves et al., 2013)
0.2 M 30.5 g/L (Meinita et al., 2012a)

Laminaria japonica 0.06% 29.09% (Lee et al., 2013)
Gelidium amansii 3% 33.7% (Park et al., 2012)
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15.2.3 Enzyme saccharification

The biological pretreatment method employs substrate-specific enzymes (Fig. 15.4). A major portion of the macroalgal

cell wall is composed of cellulose, which is made up of glucose subunits. In order to break the cellulose structure, the

cellulase enzyme is commonly used. Similarly, agarases are used for agar, carrageenase for carrageenan, alginase for

alginate, and laminarases for laminarin. Pretreatment is a prerequisite prior to enzyme saccharification, as it opens up

the cellulose fibrils and maximizes the enzymatic conversion of cellulose (Harun, 2011; Jeong et al., 2013; Kang et al.,

2013; Kim et al., 2014). Commercial enzymes, as well as enzymes extracted from bacteria or fungi, have been reported

for enzyme saccharification of macroalgal biomass (Table 15.4).

Enzyme saccharification of cellulose to glucose is considered an environmentally friendly pretreatment process.

However, this research is at a nascent stage, orientated toward isolating efficient enzyme systems (Swain et al., 2017)

from microorganisms that produce cellulolytic enzymes in their metabolic processes (Bhat and Bhat, 1997; Niehaus

et al., 1999; Zhang and Kim, 2010). Higher concentrations of extracellular cellulase enzymes have been reported from

bacteria and fungi that are feasible for large-scale production. Terrestrial sources for cellulase enzyme have been exten-

sively explored and investigated; however, studies related to cellulase extraction from marine source is still an unex-

plored platform. A large reservoir of microbes thrives in the marine ecosystem at extreme conditions of salt,

temperature, and high pressure (Trivedi et al., 2016), which imparts well-developed cellular machinery and

stable enzymes, offering novel biocatalysts with unusual properties which can be explored for bioethanol production

(Gao et al., 2010; Zhang and Kim, 2010).

15.2.4 Fermentation

Sugars obtained from dilute acid hydrolysis, enzyme saccharification, or a combination of both are subjected to fermen-

tation, where microorganisms consume the sugar as their sole source of carbon and metabolize it for their growth and

reproduction and yield ethanol as a by-product. Fermentation is dependent on the simple sugars; seaweeds consist of

both C6 and C5 sugars, but not all the microorganisms can metabolize both the sugars simultaneously. Hence the choice

of the organism for fermentation plays a pivotal role. The most widely used microorganism for ethanol fermentation is

Saccharomyces cerevisiae, which metabolizes hexose (C6) sugars. Fermentation of glucose alone will not produce high

yields of ethanol. Pichia stipitis and Pichia angophorae can metabolize pentose (C5) sugars. Other than yeast microor-

ganisms, bacteria such as Pacchysolan tannophilus and Escherichia coli have also been studied for ethanol production

from hexose and pentose sugars. Macroalgae are also composed of sugar alcohols that are not metabolized by yeast

microorganisms; Zymobacter palmae isolated from palm was observed to convert mannitol present in brown algae into

ethanol (Horn et al., 2000a,b).

Glucose is metabolized in a series of enzyme-catalyzed reaction processes called glycolysis to yield two molecules

of three-carbon compound pyruvate. Under hypoxic or anaerobic conditions, pyruvate is decarboxylated, and acetalde-

hyde is reduced to ethanol through alcohol dehydrogenase (Nelson and Michael, 2008). Xylose is converted to xylulose

and phosphorylated to xylulose-5-phosphate and further metabolized to glyceraldehyde-3-phosphate and fructose-6-

phosphate, which then enters the glycolysis pathway for subsequent pyruvate and ethanol production (McMillan, 1993),

as illustrated in Fig. 15.5.

S. cerevisiae is the predominant microorganism utilized in ethanol fermentation in industrial bioethanol production

processes. Ethanol is produced via homoethanol pathways, by Embden�Meyerhof�Parnas (EMP) glycolytic pathway,

FIGURE 15.4 Schematic representation of enzyme action on substrates.
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which is summarized below (Walker and Walker, 2011):

Glucose1 2ADP1 2Pi1 2NAD1-2Pyruvate1 2ATP1 2NADPH1 2H1

S. cerevisiae reoxidizes the reduced coenzyme NADH to NAD1 in terminal fermentative step reactions emanating

from pyruvate:

2Pyruvate1 2NADH1 2H1-2NAD1 1 2Ethanol1 2CO2

The intermediate compound, acetaldehyde, acts as the electron acceptor:

CH3COCOOHðPyruvateÞ ���������������������������������������������������!Pyruvatedecarboxylase CH3CHO1CO2ðAcetaldehyde1CO2Þ
���������������������������������������������������!Alcoholdehydrogenase CH3CH2OHðEthanolÞ

NAD1 is regenerated by alcohol dehydrogenase, which requires zinc as an essential cofactor for its activity.

Fermentation thus maintains the redox balance by regenerating NAD and keeps glycolysis proceeding. In doing so,

yeast gets energy for its own maintenance by generating 2ATP. The theoretical (stoichiometric) conversion to ethanol

from glucose is as follows:

C6H12O6ðGlucose; 180kgÞ-2C2H5OH Ethanol; 92 kgð Þ1 2CO2ðCarbon dioxide; 88 kgÞ

TABLE 15.4 Reducing sugar yield reported from macroalgal feedstock using enzymes.

Macroalgal feedstock Enzymes hydrolysis Sugar yield References

Enteromorpha intestinalis Viscozyme L and Cellic CTec2 20.1 g/L (Kim et al., 2014)

Celluclast 1.5 L and Viscozyme L 40 g/L (Cho et al., 2013)

Ulva fasciata Cellulase 22119 215 mg/g (Trivedi et al., 2013)
Viscozyme L 206 mg/g
Cellulase isolated from Cladosporium
sphaerospermum

112 mg/g ( Trivedi et al., 2015)

Ulva pertusa Meicelase-simple saccharification 43 g/L (Yanagisawa et al.,
2011)

Meicelase 78.8 g/L
Meicelase 59.1 g/L
Cellulase and amyloglucosidase 26 (Choi et al., 2012)

Gelidium elegans Meicelase 70.9 g/L glucose (Yanagisawa et al.,
2011)

53.2 g/L galactose
Gelidium amnasii Cellulase 0.98 FPU/g β-glucosidase 10.4 U/g 43.7% glucose (Kim et al., 2015)

12% galactose
Kappaphycus alvarezii Celluloclast 1.5 L and Novozyme 11 g/L (Tan and Lee, 2014)

Multifect 81 g/L (Hargreaves et al.,
2013)

G. amansii Enzyme viscozyme L 2.4 g/L (Ra et al., 2013)
G. amansii Celluclast (0.168 EGU/mL) 10.5 g/L
Gracillaria verrucosa 10% enzyme extract 7.47 g/L (Kim et al., 2015)
Acleisanthes crassifolia Meicelase 66.3 g/L (Yanagisawa et al.,

2011)

Saccharina japonica Enzyme cellulase- 45 FPU/g cellobiase-
55 CBU/g

268.5 mg/g (Ge et al., 2011)

Undaria pinnatifida Celluclast 1.5 (4 mL/100 g of cellulose)
Novozyme 188

65 mg/g (Lee et al., 2011)

Sargassum sp. 10 FPU cellulase /g, 250 CBU cellobiase/g 120 mg/g reducing sugar (Borines et al., 2013)
S. japonica Novozyme (Termamyl 120 L) 20.66 1.9 g/L (Jang et al., 2012)
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For each kilogram of glucose fermented, around 470 g of ethanol can be produced (i.e., ,50%), representing a yield

of 92% of the theoretical maximum. In industrial fermentation practice, however, the best yields are only around 90% of

this theoretical conversion due to the diversion of fermentable carbon to new yeast biomass and minor fermentation meta-

bolites (organic acids, esters, aldehydes, fuel oils, etc.). Bioethanol production from macroalgal biomass is carried out

either by separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF) processes.

In the SHF process, dilute acid hydrolysis/enzyme saccharification and fermentation are carried out separately. This pro-

cess involves higher operating costs, higher energy consumption, and more reaction time. Not all the sugars in the medium

are utilized at the end of this process. In the SSF process, enzymatic saccharification and fermentation are achieved in the

same reactor. This process is favorable as it requires slower process time and less energy and yields more ethanol.

However, the process times required for both the enzyme and yeast microorganisms are different, which results in the

slower release and consumption of sugar. Lower concentrations of inhibitors are formed in the SSF process.

15.2.5 Current status

Kappaphycus, Gelidium, Gracilaria, Sargassum, Laminaria, and Ulva are the most cultivated macroalgal genera for

hydrocolloid extraction and human food usage in China, the Philippines, and Indonesia. However, in recent years, these

genera have been regarded as potential feedstocks for biofuel production in addition to the value-added products

for phycocolloids extraction, human food, cosmetics, fertilizer, and other chemicals (Harun, 2011; Jang et al., 2012,

FIGURE 15.5 Glucose and xylose metabolism and conversion to ethanol.
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Dhargalkar and Pereira, 2005; McHugh, 2003; Yanagisawa et al., 2013). Species from these genera have been chosen

considering the availability and assessment of resources around the globe, ease of cultivation, and harvesting. The short-

er life cycles of seaweed are taken as an advantage for large-scale cultivation, which is cost effective and involves

environmentally friendly methods, zero input of fertilizers, and no changes in land use as they are exclusively grown in

marine waters. Laminaria is the most cultivated seaweed with an average production of 5.14 million tonnes (Alaswad

et al., 2015) (Table 15.5).

15.2.6 Enzyme saccharification

Bioethanol of 40 g/L has been reported from green seaweed by the glucose subunits alone, whereas other sulfated poly-

saccharides, such as ulvan, are yet to be explored. In brown seaweeds, mannitol is fermented to produce 40 g/L

of bioethanol, whereas techniques for the conversion of alginate sugar to ethanol are still underway. Whereas, in red

seaweeds, 3,6-anhydrogalactose (composed of glucose and galactose) poses a hindrance for conversion to ethanol

(Yanagisawa et al., 2013). A higher concentration of bioethanol is obtained by the conversion of all the sugars present

in the seaweed, which can be achieved by developing methods appropriate to each seaweed species.

15.2.7 Challenges in bioethanol production

Following are the challenges to be addressed for successful bioethanol production from macroalgal biomass:

� Major cost reductions need to be achieved by suitable biocatalysts and optimal processes.
� Microorganisms possessing enzymes, which have the ability to convert polysaccharides to fermentable sugars, need

to be screened or constructed.

TABLE 15.5 Current status of seaweed utilization.

Species Food Feed Industrial Medicine Fertilizer Biofuel feedstock

Ulva fasciataa 1 1 2 1 2 1

Enteromorpha compressaa 1 1 2 1 2 2

Enteromorpha intestinalisa 1 1 2 1 1 1

Monostroma oxyspermum 1 1 2 2 2 2

Cladophora fascicularisa 1 1 2 2 2 2

Chaetomorpha mediaa 1 1 2 2 1 2

Codium fragile 1 1 2 1 2 2

Caulerpa sertularioides 1 1 2 2 2 2

Dictyota dichotomaa 1 1 1 2 2 1

Spatoglossum asperuma 2 2 1 2 1 1

Hydroclathrus clathratus 2 2 1 2 1 2

Stoechospermum marginatum 2 2 1 2 1 2

Colpomenia sinuosa 2 2 1 2 1 2

Dictyopteris australis 2 2 1 2 1 2

Padina tetrastromatica 2 2 1 2 1 1

Sargassum cinereuma 2 2 1 1 1 1

Sargassum ilicifoliuma 2 1 1 1 1 1

Laminaria digitata 2 2 1 1 1 1

Macrocystis pyrifera 2 2 1 1 2 1

Porphyra vietnamensisa 1 1 2 2 2 1

Amphiroa fragilissimaa 1 2 2 2 2 2

Jania adhaerensa 2 2 2 1 2 2

Gracillaria corticataa 1 1 1 2 2 1

Hypnea musciformisa 1 1 1 2 2 1

Centroceros clavulatum 1 2 1 2 1 2

Laurencia papillosaa 1 1 1 2 2 2

Chondrus crispusa 1 2 1 2 2 1

Eucheuma uncinatum 1 1 1 2 2 1

Gelidiella acerosaa 2 2 1 2 2 1

aSeaweeds distributed along the Indian coast.
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� Commercial enzymes such as amylases, cellulases, and proteases are available, but they are more efficient in depo-

lymerizing polysaccharides from terrestrial sources. To produce these enzymes for commercial use, microbial bior-

eactors are utilized by exploiting the microalgal strains to accumulate carbohydrates and directly utilize their

enzymatic or anaerobic digestion system to produce ethanol, resulting in a cost effective bioethanol production pro-

cess. In order to proceed with this procedure, screening of high-carbohydrate-accumulating seaweeds from natural

water bodies based on their growth cycle is to be done.
� Large-scale production, to be economical, needs to utilize all sugars present in macroalgal biomass to achieve 100%

efficiency.
� Mannitol is a nonfermentable sugar alcohol produced from brown algae; most of the anaerobic bacteria are unable

to carry out fermentation of mannitol as there is a requirement of oxygen for the regeneration of NAD1 for the con-

version of NADH to NADPH, which is obtained from mannitol dehydrogenase during oxidation of mannitol to fruc-

tose and NADH. A facultative anaerobic bacterium, Z. palmae, ferments sugar alcohols, including mannitol from

Laminaria hyperborea extracts. P. angophorae is also seen to consume both mannitol and laminarin and yield etha-

nol. Similar investigations are to be carried out for ulvan, alginate, and 3,6-anhydrogalactose conversions to

bioethanol.
� Bioethanol is an intermediate product obtained during the digestion of organic materials and is produced by specific

microbial strains only, which makes it an obvious practical constraint of keeping the microbial culture from getting

contaminated by other microbes (Horn et al., 2000a,b; Nguyen et al., 2017). Hence a controlled condition needs to

be maintained.
� Setting up decentralized biorefinery systems in coastal areas with supporting infrastructure (e.g., roads, utilities).
� Economically feasible algal bioethanol can be turned into reality only through breakthrough technological innova-

tions. Getting algae to produce bioethanol in very large volumes and at a very low cost is the grand challenge that

young biotech firms have to shoulder.

15.3 Case study: bioethanol from Enteromorpha intestinalis

The abovementioned challenges are addressed in this case study, which involves bioethanol production from green

macroalgae; E. (Ulva) intestinalis of the Ulvaceae family. They grow profusely and occupy intertidal zones under

favorable nutrient, salinity, light, and temperature conditions. E. intestinalis is composed of 40.1% total carbohydrate,

20.4% protein, and 2.8% lipid. Elemental analyses including carbon 33%, nitrogen 4.36%, and hydrogen 6.44% were

recorded. The biochemical composition of E. intestinalis is comparable to those found in earlier studies. Cho et al.

(2013) recorded 42.8% carbohydrate, 31.6% crude protein, and 1.3% crude lipid. Bioethanol prospects from E. intesti-

nalis are elucidated in this section (Fig. 15.6).

Dilute acid hydrolysis of E. intestinalis at 0.7 N H2SO4, 5% substrate concentration, and 121�C for 45 min produced

239.946 1.3 mg/g of reducing sugar. Enzyme is extracted from marine bacteria Vibrio parahaemolyticus (Hebbale

et al., 2019). Pretreated biomass of E. intestinalis subjected to enzyme saccharification at pH 6 and 50�C for 24 yielded

289.896 2.4 mg/g of reducing sugar. Acid-pretreated macroalgal biomass was subjected to enzyme hydrolysis using an

enzyme and was incubated for 24 h, and a 1.2-fold increase in reducing sugar was observed in E. intestinalis when com-

pared to dilute acid pretreatment. Scanning electron micrographs of hydrolyzed biomass indicates that the dilute acid

pretreatment prior to enzyme saccharification is a prerequisite as it loosens the rugged surface of the biomass, increas-

ing the surface area and exposing more of internal cellulose, as seen in Fig. 15.7.

The acid hydrolysate obtained was subjected to SHF using the Pichia kudriavzevii yeast strain isolated from toddy

juice at 35�C and 100 rpm for 24 h. Ethanol of 0.16 g with 51.8% efficiency was obtained. Pretreated biomass subjected

to the SSF process using enzymes from V. parahaemolyticus and P. kudriavzevii yeasts at 55�C and 100 rpm for 24 h.

Ethanol of 0.10 g was obtained with 65.1% efficiency. SSF exhibited higher efficiency than the SHF process.

Mass-energy balance was carried for analyzing ethanol production from P. kudriavzevii (TY) and the sugars

obtained from both SHF and SSF processes. Results obtained were extrapolated to 1 kg to make the study more compre-

hensive. Fermentation of E. intestinalis in the SHF process produced 23.9 g/kg (30.4 mL/kg) of ethanol with a 55.9%

conversion efficiency, whereas in the SSF process, 28.9 g/kg (35.8 mL/kg) of ethanol with an 83.9% conversion effi-

ciency was obtained (Table 15.6). Ethanol from SSF was estimated to be 1.18-fold higher than the ethanol obtained

from the SHF process, indicating better efficiency. Similar results were obtained for the fermentation of E. intestinalis

using S. cerevisiae. The SSF process achieved 30.5% efficiency when compared to the SHF process (26.9%), indicating

better performance regarding fermentation yield and a faster process. A similar mass-energy balance study was reported

with various feedstocks; 1 kg of Saccharina japonica biomass yielded 23.1 g (29.2 mL) of ethanol using the SSF
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FIGURE 15.6 Bioethanol production from green macroalgae Enteromorpha intestinalis.

FIGURE 15.7 Scanning electron

micrograph of E. intestinalis illus-

trating ultrastructural variations in

the feedstock after pretreatment

and saccharification.
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process, achieving a conversion efficiency of 67.41% (Lee et al., 2013). Fermentation of 1 kg Gracillaria verrucosa

produced 38 g (48.1 mL) of ethanol from the SSF process, achieving a fermentation efficiency of 86% (Kumar et al.,

2013). Acid pretreatment of 1 kg Kappaphycus alvarezii followed by detoxification produced 80 g of galactose, which

was fermented (SSF) to produce 43.7 g (55.3 mL) of ethanol, achieving a 78.5% conversion efficiency (Hargreaves

et al., 2013). Fermentation of 1 kg of switchgrass (2G feedstock) produced 178.4 g (226.1 mL) of ethanol using the

SHF process, while the SSF process produced 183.5 g (232.5 mL) of ethanol but achieved lower conversion efficiency,

which is attributed to the presence of insoluble lignin in the biomass, which was treated using ammonia fiber expansion

(AFEX) (Jin et al., 2010). The higher ethanol in the SSF process is due to the rapid consumption of glucose by yeast as

they were produced during enzyme hydrolysis (Xiao et al., 2004). Acid hydrolysis of 1 kg of Lantana camara followed

by delignification, enzymatic hydrolysis of the biomass, and fermentation yielded 148.14 g (187.7 mL) of ethanol,

whereas fermentation of pentose-rich hydrolysate yielded 51.6 g (65.3 mL) of ethanol (Kuhad et al., 2010). Bagasse

pith (1 kg) (2G feedstock) produced 46.2 g (58.5 mL) and 66.4 g (84.1 mL) of ethanol through the SHF and SSF pro-

cesses, respectively. In this study, the commercial enzyme cellulase and β-glucosidase were employed for enzyme

hydrolysis, and fermentation was carried using P. stipitis JCM 10742 (Sritrakul et al., 2017). Notable advantages were

observed from the SSF over the SHF process, as the SSF process is amenable to enzyme hydrolysis with the rapid etha-

nol production and occurs in a single reactor, thereby reducing the operation and investment costs for setting up a

biorefinery.

Ethanol production from macroalgal biomass results in large quantities of spent biomass or waste products that are

generally disposed. High-value products are created from these wastes through the concept of biorefinery, which aims

to achieve no waste flow, resulting in economic and environmental benefits (Balina et al., 2017).

15.4 Economic prospects of macroalgae biorefinery

Seaweeds were mostly restricted to domestic purposes such as food and feed; preparation of industrial gels; and medici-

nal uses such as Laminaria sp. being used for dilation of cervix in difficult childbirth and Gelidium sp. used for intesti-

nal afflictions. In recent times, macroalgal biomass is cultivated on a large scale for the production of more valuable

commodities than food and feeds. These include the extraction of polysaccharides for agronomic applications,

TABLE 15.6 Ethanol production from different macroalgal feedstocks (expressed in L/100 kg of biomass).

Feedstock Ethanol L/100 kg

First-generation feedstock Corn grain 35.6
Sorghum 35
Cassava 17

Second-generation feedstock Rice 43
Wheat 34
Grapes 13
Sugarcane bagasse 76
Switchgrass 22.6

Third-generation feedstock Gracilaria verrucosa 4.7
Ulva fasciata 11.7
Kappaphycus alvarezii 1.7�2.4
Gracilaria corticata 2.6
Laminaria digitata 26.2
Gelidium amnasii 1.62
E. intestinalisa 3.55
Ulva lactucaa 5.58
Palmaria palmata 1.6
Ulva pertusa 11.6
Laminaria japonica 36.8
Gelidium elegans 23.2
Gelidium amansii 8.8
Sargassum sp. 28.70

aPresent study.
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cosmeceuticals, nutraceuticals, pharmaceuticals, and bioenergy. The seaweed biorefinery approach extracts the most

valuable components from the macroalgal biomass without altering the residue for commodity purposes such as food,

feed, and fertilizers (Balina et al., 2017; Buschmann et al., 2017).

Macroalgae are subjected to dilute acid pretreatment, and the pretreated biomass is hydrolyzed using enzymes.

Enzyme hydrolysate is fermented to produce ethanol. Solid/liquid separation is carried out for the fermentation broth.

The liquid fractions are rich in lipids, minerals, and other unutilized sugars and are used as liquid fertilizers, which sub-

stitutes the conventional mineral fertilizers. The solid fraction is spray dried and rich in protein and minerals and is

used as fish feed, which serves as a substitute for soy protein (Fig. 15.8). The selection of appropriate macroalgal feed-

stocks accumulating higher carbohydrate fractions and nutrients can lower the CO2 level and provide climate change

and marine eutrophication mitigation services (Seghetta et al., 2016).

Fatty acids content in dried and canned macroalgae are of linear structures and are major sources of essential fatty

acids such as palmitic acid and ω-3, -6, and -9 fatty acids. Agar from Gracilaria edulis, Gelidiella acerosa, and

Gracilaria sp. are extracted by boiling the seaweed, and the extract is filtered, freeze thawed and dried in the sun, and

marketed as powder (Kaladharan and Kaliaperumal, 1999). Macrocystis pyrifera was harvested for the production of

acetone and potash (Roesijadi et al., 2010). Macroalgal biomass is composed of high amounts of water-soluble potash,

which is readily absorbed by the plants. Composting of seaweed along with shark liver sediments and fish offal (15:4:3

by weight) fetched high manure value with 2.4% N, 0.7% P, and 3.5% potash (Chennubhotla et al., 1981). Macroalgal

biomass is regarded as a “superfood” for being rich in vitamins B12 and A and iodine. Seaweed meal incorporated in

poultry and animal feed was found to increase the iodine content of the eggs and milk production in dairy cows

(Hebbale et al., 2017; Holdt and Kraan, 2011; Torres et al., 2019). Discarded waste of algin-extracted macroalgal bio-

mass is estimated to contain 93%�94% of iodine (Torres et al., 2019). Extracted protein fraction from Ulva increases

ileal digestibility and rumen fermentation (Baeyens et al., 2015; Bikker et al., 2016). Apart from whole seaweed, the

residue obtained from industries, floating residues, and spent biomass serves as feedstock for bioethanol production

(Sudhakar et al., 2016). Therefore the biorefinery approach is sustainable and environmentally friendly as it reduces the

burden on the environment.

15.5 Scope for further research

Marine macroalgae have been explored worldwide for various applications, owing to their ability to accumulate large

concentrations of biomolecules (especially carbohydrates), which serve as raw material for bioethanol production and

FIGURE 15.8 Seaweed biorefinery with probable

constituents.
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other value-added products. Bioprocess of bioethanol production involves three major steps: dilute acid pretreatment,

enzyme saccharification, and fermentation. The major future prospects for bioethanol production from macroalgal

biomass include (1) exploring enzymes having higher catalytic activity and stability at extreme conditions; (2) yeast

microorganisms able to ferment a broad range of sugars; (3) improved ethanol yield by process optimization; and

(4) a consolidated bioprocess involving cellulolytic yeast to hydrolyze cellulose as well as ferment subsequent glu-

cose released during hydrolysis to ethanol. The biorefinery approach can be realized only with sufficient quantities of

biomass. Large-scale cultivation of macroalgae in the open ocean results in disease outbreaks and destruction of habi-

tat (killing endemic corals) (Bindu and Levine, 2011; Patterson Edward et al., 2008). In order to overcome this, the

integrated multitrophic aquaculture (IMTA) (Fig. 15.9) concept is introduced, which involves farming macroalgae in

close proximity to other species at different trophic levels on land. Land-based seaweed cultivation with adaptation

to a much wider range of macroalgal genera offers raw materials for higher-value product development. Intertidal

species like Ulva sp. and Enteromorpha sp. have a high tolerance to temperature and irradiance ranges, which can be

cultivated in the IMTA system. The cultivation of seaweeds for biofuel production needs to be encouraged to meet

the future fuel demand as seaweeds have high potential as feedstock for biofuel production as part of the nation’s

strategic energy security program. This would also empower rural women with job opportunities. The development

of seaweed-based industries at decentralized levels along coastal areas, where resources are abundantly available,

would enhance the job opportunities for the rural youth. Seaweed cultivation as a notable future enterprise can open

up platforms for establishing seed hatcheries, seeding units, and processing units and enhance employment opportu-

nities in rural coastal areas.

15.6 Conclusion

Macroalgal species with a higher carbohydrate content are vital for bioethanol production. Algal biomass consists of car-

bohydrates in the form of structural (cellulose) and storage (starch) polysaccharides, and hydrolysis of these polysacchar-

ides results in monosaccharides (fermentable sugars), which serve as substrates for fermentation. Pretreatment using

chemical and biological methods is a prerequisite for ethanol production. Wild bacterial/fungal strains are explored for

enzyme production with the higher catalytic activity. The fermentative efficiency of the wild yeast strain P. kudriavzevii

in fermenting macroalgal biomass was elucidated with a case study using the green macroalgae E. intestinalis. For macro-

algal biomass, in addition to being a viable feedstock for bioethanol production, there is scope for the utilization of differ-

ent by-products as well as high value-added products. Bioethanol production would address the growing needs of the

transportation sector, help in mitigating the greenhouse gas footprint in the transportation sector, and ensure the strategic

energy security of the nation. Judicious use of feedstock (macroalgae, agricultural residues) would aid in lowering import

burdens while empowering rural women with a sustainable livelihood through integrated approaches in fishery, etc.

FIGURE 15.9 Integrated multitrophic aquaculture model. Gazni: abandoned paddy cultivation land.
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